HHT Basics and Applications

For Speech, Machine Health Monitoring, and Bio-Medical Data Analysis

Norden E. Huang

March 24, 2003

Available Data Analysis Methods for Nonstationary (but Linear) time series

- Various probability distributions
- Spectral analysis and Spectrogram
- Wavelet Analysis
- Wigner-Ville Distributions
- Empirical Orthogonal Functions aka Singular Spectral Analysis
- Moving means
- Successive differentiations

Available Data Analysis Methods for Nonlinear (but Stationary and Deterministic) time series

- Phase space method
 - Delay reconstruction and embedding
 - Poincaré surface of section
 - Self-similarity, attractor geometry & fractals
- Nonlinear Prediction
- Lyapunov Exponents for stability

HHT, for Nonstationary, Nonlinear and Stochastic data, consists of the following components:

The Empirical Mode Decomposition:

To generate the adaptive basis, the Intrinsic Mode Functions (IMF), from the data

The Hilbert Spectral Analysis:

To generate a time-frequency-energy representation of the data Based on the IMFs

The Empirical Mode Decomposition Method

Sifting

Empirical Mode Decomposition: Methodology: Test Data

Methodology: data and m1

Methodology: data & h1

Methodology: h1 & m2

Methodology: h4 & m5

Two Stoppage Criteria: S and SD

- The S number: S is defined as the consecutive number of siftings, in which the numbers of zero-crossing and extrema are the same for these S siftings.
- B. SD is small than a pre-set value, where

Empirical Mode Decomposition: Methodology: IMF c1

Methodology: data & r1

Comparisons: Fourier, Hilbert & Wavelet

Length Of Day Data

LOD: IMF

IMF LOD62 : ci(100,8,8; 3^a,: 50,3,3;-1²,45^a, -10)

LOD: Data & c12

LOD: Data & Sum c11-12

LOD: Data & sum c10-12

LOD: Data & c9 - 12

LOD: Data & c8 - 12

LOD: Detailed Data and Sum c8-c12

LOD: Data & c7 - 12

LOD: Detail Data and Sum IMF c7-c12

LOD: Difference Data – sum all IMFs

Traditional View

a la Hahn (1995) : Hilbert

LOD: Mean envelop from 11 different siftings

Mean Envelopes for Annual Cycle IMFs

Comparisons

	Fourier \	Wavelet	Hilbert \
Basis	a priori	a priori	Adaptive
Frequency	Convolution: Global	Convolution: Regional	Differentiation: Local
Presentation	Energy- frequency	Energy-time- frequency	Energy-time- frequency
Nonlinear	no	no	yes
Non-stationary	no	yes	yes
Feature extraction	no	discrete: no continuous: yes	yes

Duffing Pendulum

Duffing Type Wave

Data: x = cos(wt+0.3 sin2wt)

Duffing Type Wave Wavelet Spectrum

Duffing Type Wave Hilbert Spectrum

Duffing Type Wave Marginal Spectra

Technology Description

Results:

- An adaptive basis to filter signal
- Frequency defined as a function of time by differentiation rather than convolution analysis
- Sharp identification of embedded structures
- A more simple and revealing interpretation than prior methods

Market Potential Key Considerations

- Conceptually simple and direct
- An efficient, adaptive, user-friendly set of algorithms
- Capable of analyzing nonlinear and nonstationary signals
- Improves accuracy by using an adaptive basis to preserve intrinsic properties of data
- Yields results with more physical meaning and a different perspective than existing tools
- Useful in analyzing a variety of from nonlinear and nonstationary processes

Possible Applications

- Vibration, speech and acoustic signal analyses: this also applies to machine health monitoring.
- Non-destructive test and structural Health monitoring
- Earthquake Engineering
- As a nonlinear Filter
- Bio-medical applications
- Time-Frequency-Energy distribution for general nonlinear and nonstationary data analysis, for example, turbulence

Sound Enhancement:

- Fourier filter is linear and stationary; it works in Frequency domain
- Fourier filter will take away harmonics and dull the sharp corners of all the fundamentals
- EMD filter is nonlinear and intermittent; it works in Time domain
- EMD filter will take the unwanted noise of short periods and leaves the fundamentals unchanged

HHT Filtering to Separate

Ding from Hello

Data: Hallo + Ding

IMF: Hallo + Ding

Filter for Hallo + Ding is defined as

- c1(15200:30000) = 0;
- c2(15200:30000) = 0;
- c3(15200:21400) = 0;
- For c4 to c9 : $q = [\cos(2\pi t/1200) + 1]/2$; for t=0:1200, centered at 15200.

IMF Filtered: Hallo

Data and Filtered Components

Hilbert Spectrum: Hallo + Ding

Hilbert Spectrum Filtered: Hallo

Potential Application for Speaker Identification

Difference between Speakers

IMF: Hello N

IMF: Hello J

Hilbert Spectrum: Hello N

Hilbert Spectrum: Hello J

Detailed Hilbert Spectrum: Hello N

Detailed Hilbert Spectrum: Hello J

Detailed Wavelet Spectrum: Hello N

Detailed Wavelet Spectrum: Hello J

100 Smoothed H Spectrum: Hello N

200 Smoothed H Spectrum: Hello N

Speech Analysis:

Hello: The Effects of Harmonics and EMD filtering

Speech Analysis: Hello: Details of the Difference Data

Speech Analysis: Hello: The Hilbert Transform of the Difference Data

Speech Analysis:

Hello: The Effects of Harmonics and EMD filtering

Summary

- Numerous application possibilities
- Intellectual property protected
- Concepts demonstrated in many applications
- Licensing and partnering opportunity
- Enabling technology with significant commercial potential
- Significant benefits
 - Precision, flexibility, accuracy, easy implementation,

For more information, please contact:

Evette Brown-Conwell

- Phone: (301) 286-0561
- E-mail: eyette.r.conwell@nasa.gov